[yith_wcwl_add_to_wishlist]

کلیات معادلات دیفرانسیل با مشتقات جزئی

دسته: , , , , تاریخ انتشار: 28 دسامبر 2018آخرین بروز رسانی: 28 دسامبر 2018
قیمت محصول

2,000 تومان

جزئیات بیشتر

قوانین استفاده

توضیحات مختصر محصول
کلیات معادلات دیفرانسیل با مشتقات جزئی

موضوع مقاله: کلیات معادلات دیفرانسیل با مشتقات جزئی

زبان مقاله: فارسی

توضیحات تحقیق دانشجویی:

یک معادله دیفرانسیل با مشتقات جزئی (یا نسبی) برای یک تابع رابطهای است که بین تابع مجهول u و متغیرهای مستقل آن (به تعداد متنابهی) و مشتقات جزئی تابع u نسبت به متغیرهای مستقل آن برقرار میباشد. تابع u را جوابی برای معادله دیفرانسیل فوق مینامیم هرگاه پس لز جایگزینی u(x,y,…) و مشتقات جزئی آن، این معادله دیفرانسیل نسبت به متغیرهای مستقل مذکور، درناحیه ای از فضای این متغیرهای مستقل تبدیل به یک اتحاد شود.

مرتبه یک معادله دیفرانسیل با مشتقات جزئی بالاترین مرتبه مشتقات موجود در آن معادله است. مثلاً uuxy+uyux=f(x,y) یک معادله دیفرانسیل مرتبه دوم است. در اینجا و و

یک معادلعه دیفرانسیل با مشتقات جزئی را خطی گوئین هرگاه این معادله نسبت به تابع مجهول و مشتقات آن، با ضرایبی که فقط تابع متغیرهای مستقل هستند، خطی باشد.

یک معادله با مشتقات جرئی از مرتبه m را شبه خطی گوئیم هرگاه این معادله نسبت به مشتقات جزئی مرتبه mام تابع مجهول، با ضرایبی که فقط تابع متغیرهای مستقل u و مشتقات از مرتبه کمتر از m هستند، خطی باشد (مانند مثال بالا) یک معادله دیفرانسیل با مشتقات جزئی خطی یک حالت خاص معادله شبه خطی است.

۲- معادلات دیفرانسیل با مشتقات جزئی مرتبه اول

معادله دیفرانسیل با مشتقات جزئی مرتبه اول خطی با ضرایب ثابت

به عنوان گام نخست معادلع دیفرانسیل (۲-۱) aux+buy+cu=f(xy) را درنظر میگیریم، که در آن تابع f داده شده و ضرایب ثابتاند. سعی میکنیم با تغییر متغیرهای ساده مانند (۲-۲) x=ay+a1 و y=by+b1 معادله دیفرانسیل با مشتقات جزئی (۲-۱) را به معادله دیفرانسیل ) uy+cu=f(ay+a1 , by +b1 تبدیل کنیم

که مانند یک معادله دیفرانسیل معمولی خطی مرتبه اول با ضرایب ثابت نسبت به متغیر مستقل y حل میشود، منتها ثابت انتگرالگیری تابع دلخواهی از خواهد بود. بعد از حل بجای y و برحسب x و y جانشین میکنیم تا جواب u(x,y) حاصل شود البته لازمه این کار آنست که دترمیبنال ضرایب تغییر متغیرهای (۲-C) غیرصفر باشد، سعنی مستقل بودن این متغیرها تضمین شود (این دترمینال ژاکوبی تغییر متغیرها است)

مثال ا

قضیه زیر یک روش حل معادله با مشتقات جزئی مرتبه اول شبه خطی را پیش روی ما میگذارد که فعلاً از بیان آن خودداری میکنیم.
قضیه ۱ جولب عمومی معادلع دیفرانسیل با مشتقات جزئی مرتبه اول شبه خطی (۲-۳) P(x,y,u)ux+Q(x,y,u)uy=R(x,y,u) به صورت W=F(v) است که در آن F تابعی دلخواه است و V(x,y,u)=c1و W(x,y,u) جواب عمومی در معادله دیفرانسیل معمولی مرتبه اول (۲-۴) میباشد.

مثال ۲: جواب عمومی معادله uux+yuy=x را بیابید
حل دستگاه دو معادله دیفرانسیل معمولی مرتبه اول از روابط بدست میآیند

همیارپروژه نوین

پیشنهاد:

حل عددی معادلات دیفرانسیل

حل عددی معادلات حل عددی معادلات دیفرانسیل

روش های عددی

نمایش بیشتر
دیدگاه های کاربران
دیدگاهتان را با ما درمیان بگذارید
تعداد دیدگاه : 0 امتیاز کلی : 0.0 توصیه خرید : 0 نفر
بر اساس 0 خرید
0
0
0
0
0

هیچ دیدگاهی برای این محصول نوشته نشده است.

اولین نفری باشید که دیدگاهی را ارسال می کنید برای “کلیات معادلات دیفرانسیل با مشتقات جزئی”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

قیمت محصول

2,000 تومان